Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Mol Cancer Res ; 22(4): 386-401, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38294692

Calcium homeostasis is critical for cell proliferation, and emerging evidence shows that cancer cells exhibit altered calcium signals to fulfill their need for proliferation. However, it remains unclear whether there are oncogene-specific calcium homeostasis regulations that can expose novel therapeutic targets. Here, from RNAi screen, we report that adenosylhomocysteinase like protein 1 (AHCYL1), a suppressor of the endoplasmic reticulum (ER) calcium channel protein inositol trisphosphate receptor (IP3R), is selectively upregulated and critical for cell proliferation and tumor growth potential of human NRAS-mutated melanoma, but not for melanoma expressing BRAF V600E. Mechanistically, AHCYL1 deficiency results in decreased ER calcium levels, activates the unfolded protein response (UPR), and triggers downstream apoptosis. In addition, we show that AHCYL1 transcription is regulated by activating transcription factor 2 (ATF2) in NRAS-mutated melanoma. Our work provides evidence for oncogene-specific calcium regulations and suggests AHCYL1 as a novel therapeutic target for RAS mutant-expressing human cancers, including melanoma. IMPLICATIONS: Our findings suggest that targeting the AHCYL1-IP3R axis presents a novel therapeutic approach for NRAS-mutated melanomas, with potential applicability to all cancers harboring RAS mutations, such as KRAS-mutated human colorectal cancers.


Adenosylhomocysteinase , Endoplasmic Reticulum , Melanoma , Humans , Adenosylhomocysteinase/metabolism , Calcium , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , GTP Phosphohydrolases/genetics , Homeostasis , Melanoma/metabolism , Melanoma/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism
2.
Nature ; 623(7989): 1034-1043, 2023 Nov.
Article En | MEDLINE | ID: mdl-37993715

Diet-derived nutrients are inextricably linked to human physiology by providing energy and biosynthetic building blocks and by functioning as regulatory molecules. However, the mechanisms by which circulating nutrients in the human body influence specific physiological processes remain largely unknown. Here we use a blood nutrient compound library-based screening approach to demonstrate that dietary trans-vaccenic acid (TVA) directly promotes effector CD8+ T cell function and anti-tumour immunity in vivo. TVA is the predominant form of trans-fatty acids enriched in human milk, but the human body cannot produce TVA endogenously1. Circulating TVA in humans is mainly from ruminant-derived foods including beef, lamb and dairy products such as milk and butter2,3, but only around 19% or 12% of dietary TVA is converted to rumenic acid by humans or mice, respectively4,5. Mechanistically, TVA inactivates the cell-surface receptor GPR43, an immunomodulatory G protein-coupled receptor activated by its short-chain fatty acid ligands6-8. TVA thus antagonizes the short-chain fatty acid agonists of GPR43, leading to activation of the cAMP-PKA-CREB axis for enhanced CD8+ T cell function. These findings reveal that diet-derived TVA represents a mechanism for host-extrinsic reprogramming of CD8+ T cells as opposed to the intrahost gut microbiota-derived short-chain fatty acids. TVA thus has translational potential for the treatment of tumours.


CD8-Positive T-Lymphocytes , Neoplasms , Oleic Acids , Animals , Cattle , Humans , Mice , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Dairy Products , Fatty Acids, Volatile/pharmacology , Fatty Acids, Volatile/therapeutic use , Milk/chemistry , Neoplasms/diet therapy , Neoplasms/immunology , Oleic Acids/pharmacology , Oleic Acids/therapeutic use , Red Meat , Sheep
3.
Cell Chem Biol ; 29(7): 1200-1208.e6, 2022 07 21.
Article En | MEDLINE | ID: mdl-35429459

Environmental stresses, including hypoxia or detachment for anchorage independence, or attenuation of mitochondrial respiration through inhibition of electron transport chain induce reductive carboxylation in cells with an enhanced fraction of citrate arising through reductive metabolism of glutamine. This metabolic process contributes to redox homeostasis and sustains biosynthesis of lipids. Reductive carboxylation is often dependent on cytosolic isocitrate dehydrogenase 1 (IDH1). However, whether diverse cellular signals induce reductive carboxylation differentially or through a common signaling converging node remains unclear. We found that induction of reductive carboxylation commonly requires enhanced tyrosine phosphorylation and activation of IDH1, which, surprisingly, is achieved by attenuation of a cytosolic protein tyrosine phosphatase, Src homology region 2 domain-containing phosphatase-2 (SHP-2). Mechanistically, diverse signals induce reductive carboxylation by converging at upregulation of NADPH oxidase 2, leading to elevated cytosolic reactive oxygen species that consequently inhibit SHP-2. Together, our work elucidates the signaling basis underlying reductive carboxylation in cancer cells.


Isocitrate Dehydrogenase , Neoplasms , Cell Line, Tumor , Citric Acid Cycle , Glutamine/metabolism , Isocitrate Dehydrogenase/metabolism , Oxidation-Reduction , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
4.
Mol Cell ; 82(11): 1992-2005.e9, 2022 06 02.
Article En | MEDLINE | ID: mdl-35417664

Phospholipase A2, group VII (PLA2G7) is widely recognized as a secreted, lipoprotein-associated PLA2 in plasma that converts phospholipid platelet-activating factor (PAF) to a biologically inactive product Lyso-PAF during inflammatory response. We report that intracellular PLA2G7 is selectively important for cell proliferation and tumor growth potential of melanoma cells expressing mutant NRAS, but not cells expressing BRAF V600E. Mechanistically, PLA2G7 signals through its product Lyso-PAF to contribute to RAF1 activation by mutant NRAS, which is bypassed by BRAF V600E. Intracellular Lyso-PAF promotes p21-activated kinase 2 (PAK2) activation by binding to its catalytic domain and altering ATP kinetics, while PAK2 significantly contributes to S338-phosphorylation of RAF1 in addition to PAK1. Furthermore, the PLA2G7-PAK2 axis is also required for full activation of RAF1 in cells stimulated by epidermal growth factor (EGF) or cancer cells expressing mutant KRAS. Thus, PLA2G7 and Lyso-PAF exhibit intracellular signaling functions as key elements of RAS-RAF1 signaling.


Phospholipids , Proto-Oncogene Proteins B-raf , Phospholipases A2 , Platelet Activating Factor/analogs & derivatives , Platelet Activating Factor/metabolism
5.
Mol Cell ; 81(18): 3833-3847.e11, 2021 09 16.
Article En | MEDLINE | ID: mdl-34289383

Mutant isocitrate dehydrogenase (IDH) 1 and 2 play a pathogenic role in cancers, including acute myeloid leukemia (AML), by producing oncometabolite 2-hydroxyglutarate (2-HG). We recently reported that tyrosine phosphorylation activates IDH1 R132H mutant in AML cells. Here, we show that mutant IDH2 (mIDH2) R140Q commonly has K413 acetylation, which negatively regulates mIDH2 activity in human AML cells by attenuating dimerization and blocking binding of substrate (α-ketoglutarate) and cofactor (NADPH). Mechanistically, K413 acetylation of mitochondrial mIDH2 is achieved through a series of hierarchical phosphorylation events mediated by tyrosine kinase FLT3, which phosphorylates mIDH2 to recruit upstream mitochondrial acetyltransferase ACAT1 and simultaneously activates ACAT1 and inhibits upstream mitochondrial deacetylase SIRT3 through tyrosine phosphorylation. Moreover, we found that the intrinsic enzyme activity of mIDH2 is much higher than mIDH1, thus the inhibitory K413 acetylation optimizes leukemogenic ability of mIDH2 in AML cells by both producing sufficient 2-HG for transformation and avoiding cytotoxic accumulation of intracellular 2-HG.


Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/metabolism , Acetyl-CoA C-Acetyltransferase/metabolism , Acetylation , Animals , Antineoplastic Agents/pharmacology , Female , Humans , Isocitrate Dehydrogenase/metabolism , Ketoglutaric Acids/metabolism , Leukemia, Myeloid, Acute/genetics , Lysine/genetics , Lysine/metabolism , Male , Mice , Mice, Inbred NOD , Mutation/genetics , NADP/metabolism , Nuclear Proteins/metabolism , Phosphorylation , Polymorphism, Single Nucleotide/genetics , Primary Cell Culture , Protein Binding , Protein Processing, Post-Translational , Protein-Tyrosine Kinases/metabolism
6.
Adv Sci (Weinh) ; 7(14): 2000098, 2020 Jul.
Article En | MEDLINE | ID: mdl-32714746

The Rho family GTPases are crucial drivers of tumor growth and metastasis. However, it is difficult to develop GTPases inhibitors due to a lack of well-characterized binding pockets for compounds. Here, through molecular dynamics simulation of the RhoA protein, a groove around cysteine 107 (Cys107) that is relatively well-conserved within the Rho family is discovered. Using a combined strategy, the novel inhibitor DC-Rhoin is discovered, which disrupts interaction of Rho proteins with guanine nucleotide exchange factors (GEFs) and guanine nucleotide dissociation inhibitors (GDIs). Crystallographic studies reveal that the covalent binding of DC-Rhoin to the Cys107 residue stabilizes and captures a novel allosteric pocket. Moreover, the derivative compound DC-Rhoin04 inhibits the migration and invasion of cancer cells, through targeting this allosteric pocket of RhoA. The study reveals a novel allosteric regulatory site within the Rho family, which can be exploited for anti-metastasis drug development, and also provides a novel strategy for inhibitor discovery toward "undruggable" protein targets.

7.
Bioorg Med Chem Lett ; 30(9): 127061, 2020 05 01.
Article En | MEDLINE | ID: mdl-32173197

The post-translational modifications of histones, including histone methylation and demethylation, control the expression switch of multiple genes. SET domain-containing lysine methyltransferase 7 (SET7) is the only methyltransferase, which can specifically monomethylate lysine-4 of histone H3 (H3K4me1) and play critical roles in various diseases, including breast cancer, hepatitis C virus (HCV), atherosclerotic vascular disease, diabetes, prostate cancer, hepatocellular carcinoma, and obesity. However, several known SET7 inhibitors exhibit weak activity or poor selectivity. Therefore, the development of novel SET7 inhibitors is highly desirable and of great clinical value. In this study, we identified 2-79 as a new hit compound by structure-based virtual screening and further AlphaLISA-based biochemical evaluation. Via chemical optimization, the synthesized compound DC21 was confirmed as a potent SET7 inhibitor with an IC50 value of 15.93 µM. The interaction between DC21 and SET7 was also validated through SPR experiment. Especially, DC21 retarded proliferation of MCF7 cells with an IC50 value of 25.84 µM in cellular level. In addition, DC21 has good selectivity for several other epigenetic targets, such as SUV39H1, G9a, NSD1, DOT1L and MOF. DC21 can serve as a lead compound to develop more potential SET7 inhibitors and as a chemical probe for SET7 biological function studies.


Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Drug Discovery , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Cell Proliferation/drug effects , Computer Simulation , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Models, Molecular , Molecular Structure , Structure-Activity Relationship
8.
J Med Chem ; 63(3): 1337-1360, 2020 02 13.
Article En | MEDLINE | ID: mdl-31910017

p300 and CREB-binding protein (CBP) are ubiquitously expressed pleiotropic lysine acetyltransferases and play a key role as transcriptional co-activators that are essential for a multitude of cellular processes. Despite great importance, there is a lack of highly selective, potent, druglike p300/CBP inhibitors. Through the artificial-intelligence-assisted drug discovery pipeline and further optimization, we reported the discovery of novel, highly selective, potent small-molecule inhibitors of p300/CBP histone acetyltransferases (HAT) with desired druglike properties, exemplified by B026. Our data demonstrated that B026, with half maximal inhibitory concentration (IC50) values of 1.8 nM to p300 and 9.5 nM to CBP enzyme inhibitory activity, is the most potent, selective p300/CBP HAT inhibitor. Moreover, B026 achieves significant and dose-dependent tumor growth inhibition in an animal model of human cancer, suggesting that B026 is a highly promising p300/CBP HAT inhibitor and warrants extensive preclinical investigation as a potential clinical development candidate.


Antineoplastic Agents/therapeutic use , CREB-Binding Protein/antagonists & inhibitors , E1A-Associated p300 Protein/antagonists & inhibitors , Enzyme Inhibitors/therapeutic use , Neoplasms/drug therapy , Spiro Compounds/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Cell Proliferation/drug effects , Datasets as Topic , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Female , Humans , Male , Mice, Inbred BALB C , Microsomes, Liver/metabolism , Molecular Docking Simulation , Molecular Structure , Neural Networks, Computer , Rats, Sprague-Dawley , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacokinetics , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 29(4): 638-645, 2019 02 15.
Article En | MEDLINE | ID: mdl-30626558

The protein-protein interaction between WDR5 (WD40 repeat protein 5) and MLL1 (mixed-lineage leukemia 1) is important for maintaining optimal H3K4 methyltransferase activity of MLL1. Dysregulation of MLL1 catalytic function is relevant to mixed-lineage leukemia, and targeting WDR5-MLL1 interaction could be a promising therapeutic strategy for leukemia harboring MLL1 fusion proteins. To date, several peptidomimetic and non-peptidomimetic small-molecule inhibitors targeting WDR5-MLL1 interaction have been reported, yet the discovery walk of new drugs inhibiting MLL1 methytransferase activity is still in its infancy. It's urgent to find other small-molecule WDR5-MLL1 inhibitors with novel scaffolds. In this study, through fluorescence polarization (FP)-based high throughput screening, several small-molecule inhibitors with potent inhibitory activities in vitro against WDR5-MLL1 interaction were discovered. Nuclear Magnetic Resonance (NMR) assays were carried out to confirm the direct binding between hit compounds and WDR5. Subsequent similarity-based analog searching of the 4 hits led to several inhibitors with better activity, among them, DC_M5_2 displayed highest inhibitory activity with IC50 values of 9.63 ±â€¯1.46 µM. Furthermore, a molecular docking study was performed and disclosed the binding modes and interaction mechanisms between two most potent inhibitors and WDR5.


High-Throughput Screening Assays/methods , Histone-Lysine N-Methyltransferase/drug effects , Intracellular Signaling Peptides and Proteins/drug effects , Myeloid-Lymphoid Leukemia Protein/drug effects , Small Molecule Libraries/pharmacology , Fluorescence Polarization , Histone-Lysine N-Methyltransferase/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Protein Binding
10.
Eur J Med Chem ; 163: 281-294, 2019 Feb 01.
Article En | MEDLINE | ID: mdl-30529546

Bromodomain-containing protein 4 (BRD4), an epigenetic reader of acetyl lysine, has emerged as a promising therapeutic target for many diseases including cancer, inflammation and heart failure. Our previous study reported that nitroxoline, an FDA approved antibiotic, showed potential BRD4 inhibitory activity and antiproliferation activity against leukemia cell lines. In this study, we further explored the structure-activity relationship (SAR) around nitroxoline and employed our previously developed machine learning based activity scoring function BRD4LGR for further analysis. To improve the cellular level activity, physico-chemical properties were optimized using computational approaches. Then the candidates were tested for their ADME/T profiles. Finally, based on this rational hit-to-lead optimization strategy, 3 drug-like BRD4 inhibitors were obtained, with different profiles on cell line selectivity for multiple myeloma, leukemia and triple negative breast cancer. Further mechanism study showed these compounds could down-regulate c-Myc to inhibit cancer cell growth. This work illustrates the application of multiple computer-aided drug design techniques in a hit-to-lead optimization scenario, and provides novel potent BRD4 inhibitors with different phenotype propensities for future cancer treatment.


Computer-Aided Design , Imidazoles/chemistry , Nitroquinolines/chemistry , Nuclear Proteins/antagonists & inhibitors , Quinolines/chemistry , Transcription Factors/antagonists & inhibitors , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Humans , Leukemia/drug therapy , Multiple Myeloma/drug therapy , Proto-Oncogene Proteins c-myc/drug effects , Structure-Activity Relationship , Triple Negative Breast Neoplasms/drug therapy
11.
RSC Adv ; 9(9): 4917-4924, 2019 Feb 05.
Article En | MEDLINE | ID: mdl-35514635

The general control nonrepressed protein 5 (GCN5) is an important target for drug design and drug discovery largely owing to its pathogenic role in malignancies. Chemical probes that target GCN5 have been developed in recent decades, but their potencies are still unsatisfactory. In this study, through an in-house developed AlphaScreen-based high throughput screening platform, radioactive acetylation assays and 2D-similarity based analogue searching, we discovered DC_HG24-01 as the novel hGCN5 inhibitor with the IC50 value of 3.1 ± 0.2 µM. Further docking studies suggested that DC_HG24-01 could occupy the binding pocket of acetyl-CoA cofactor, which laid the foundation for the development of more potent hGCN5 inhibitors in the future. At the cellular level, DC_HG24-01 could retard cell proliferation and block the acetylation of H3K14 leading to cell apoptosis and cell cycle arrest at the G1 phase in MV4-11 cell lines. Taken together, the discovery of DC_HG24-01 may serve as a good starting point to accelerate the development of more potent hGCN5 inhibitors through further structural decoration and provide new insight into the pharmacological treatment of leukemia.

12.
Eur J Med Chem ; 157: 867-876, 2018 Sep 05.
Article En | MEDLINE | ID: mdl-30145373

The histone acetyltransferases (HATs) in mammals include GCN5 N-acetyltransferases, the MOZ, YBF2, SAS2, and TIP60 proteins, and the orphan HATs. The males absent on the first (MOF) is mainly related to acetylation of histone H4 Lys16 and has influence on downstream genes expression. However, the only inhibitor MG149 presented low activity against MOF. Besides, there was no high throughput screening platform on MOF, which limited the inhibitor discovery and functional study. In our study, we set up a high throughput screening platform based on amplified luminescent proximity homogeneous assay (ALPHA), which led us to a moderate inhibitor DC_M01. By chemical modification, we found DC_M01_7, which was the analog of DC_M01 with an IC50 value of 6 µM. DC_M01_7 significantly inhibited HCT116 cells proliferation and could also inhibit histone 4 lysine 16 acetylation in HCT116 cells. To sum up, our work will probably assist the further development of more potent MOF inhibitors and the functional study of hMOF.


Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Histone Acetyltransferases/antagonists & inhibitors , Sulfonamides/pharmacology , Thiazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , HCT116 Cells , Histone Acetyltransferases/metabolism , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Thiazoles/chemical synthesis , Thiazoles/chemistry
13.
Front Chem ; 6: 57, 2018.
Article En | MEDLINE | ID: mdl-29594101

Epigenetic dysfunction has been widely implicated in several diseases especially cancers thus highlights the therapeutic potential for chemical interventions in this field. With rapid development of computational methodologies and high-performance computational resources, computer-aided drug design has emerged as a promising strategy to speed up epigenetic drug discovery. Herein, we make a brief overview of major computational methods reported in the literature including druggability prediction, virtual screening, homology modeling, scaffold hopping, pharmacophore modeling, molecular dynamics simulations, quantum chemistry calculation, and 3D quantitative structure activity relationship that have been successfully applied in the design and discovery of epi-drugs and epi-probes. Finally, we discuss about major limitations of current virtual drug design strategies in epigenetics drug discovery and future directions in this field.

14.
ACS Chem Biol ; 13(3): 772-781, 2018 03 16.
Article En | MEDLINE | ID: mdl-29381856

DNA methyltransferase-1 (DNMT1) plays a crucial role in the maintenance of genomic methylation patterns. The crystal structure of DNMT1 was determined in two different states in which the helix that follows the catalytic loop was either kinked (designated helix-kinked) or well folded (designated helix-straight state). Here, we show that the proper structural transition between these two states is required for DNMT1 activity. The mutations of N1248A and R1279D, which did not affect interactions between DNMT1 and substrates or cofactors, allosterically reduced enzymatic activities in vitro by decreasing kcat/ Km for AdoMet. The crystallographic data combined with molecular dynamic (MD) simulations indicated that the N1248A and R1279D mutants bias the catalytic helix to either the kinked or straight conformation. In addition, genetic complementation assays for the two mutants suggested that disturbing the conformational transition reduced DNMT1 activity in cells, which could act additively with existing DNMT inhibitors to decrease DNA methylation. Collectively, our studies provide molecular insights into conformational changes of the catalytic helix, which is essential for DNMT1 catalytic activity, and thus aid in better understanding the relationship between DNMT1 dynamic switching and enzymatic activity.


DNA (Cytosine-5-)-Methyltransferase 1/chemistry , Molecular Dynamics Simulation , Animals , Catalytic Domain , Crystallography, X-Ray , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Methylation/genetics , Humans , Mutation , Protein Conformation
15.
Phys Chem Chem Phys ; 19(43): 29472-29482, 2017 Nov 08.
Article En | MEDLINE | ID: mdl-29082400

The effects of Co doping on the structural, optical, magnetic and transport properties of (In0.98-xCoxSn0.02)2O3 films grown by RF-magnetron sputtering were systematically investigated by theoretical and experimental techniques. The detailed structural analyses revealed that all the (In0.98-xCoxSn0.02)2O3 films possess the cubic bixbyite structure, with the substitutional Co at the In3+ sites of the In2O3 matrix, while some of the Co atoms form Co metal clusters. Obvious room-temperature (RT) ferromagnetic behavior was observed and the saturated magnetization (Ms) first increased, then decreased with increased Co concentration, while carrier concentration nc decreased monotonically, implying that the Co metal clusters are superparamagnetic and the observed RT ferromagnetism is not mediated by the charge carriers. The Mott variable range hopping (VRH) and hard band gap hopping transport behavior dominates the conduction mechanism of the films, confirming that the carriers are strongly localized. The UV-Vis and photoluminescence (PL) measurements indicate the decreased optical band gap Eg with Co doping, and further prove that the oxygen vacancies and Co impurity band form defect complexes of donor-acceptor pairs. The density functional theoretical calculations show that the codoped Sn can change the magnetic coupling between two Co ions from antiferromagnetic to ferromagnetic by the new hybridization between the Co 3d states with the Sn induced donor band. It can be concluded that the bound magnetic polaron (BMP) based oxygen vacancies as well as the Co-O-Co ferromagnetic superexchange interaction induced by Sn codoping may be responsible for the intrinsic ferromagnetic ordering in the (In0.98-xCoxSn0.02)2O3 films. These results may provide new insight for understanding the magnetic mechanism of In2O3 based DMS systems.

16.
Bioorg Med Chem Lett ; 27(2): 342-346, 2017 01 15.
Article En | MEDLINE | ID: mdl-27899265

DNA methyltransferases are involved in diverse biological processes and abnormal methylation patterns play essential roles in cancer initiation and progression. DNA methyltransferase 3A (DNMT3A) acting as a de novo DNA methyltransferase, has gained widespread attention especially in haematological diseases. To date, large numbers of DNMTs inhibitors have been discovered, however, the small molecular inhibitors targeting DNMT3A are still in its infancy. In this study, structure-based virtual screening in combination with biological assays was performed to discovery potent novel DNMT3A inhibitors. Compound 40 and 40_3 displayed comparable in vitro inhibitory activity against DNMT3A with IC50 values of 46.5µM and 41µM, respectively. Further binding mode analysis suggested these molecules inhibit DNMT3A activity through binding the S-adenosyl-l-methionine (SAM) pocket. Overall, 40 and 40_3 may serve as novel scaffolds for further optimization and small molecular probes for investigating DNMT3A function.


DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Cell Line , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
...